
REHLS: Resource-aware Program Transformation
Workflow for High-level Synthesis

Atieh Lotfi Rajesh K. Gupta
UC San Diego, CA, USA UC San Diego, CA, USA

alotfi@cs.ucsd.edu gupta@cs.ucsd.edu

Abstract—Despite considerable improvements in existing HLS
tools, they still require designer interventions to provide efficient
synthesis results. This manual design space exploration and code
rewriting and optimization takes significant time and negates the
HLS design productivity gains. To overcome this challenge, this
paper uses compiler frontend as an independent preprocessing
step to explore the design space and adds an automated source-
to-source transformation step before HLS. In particular, it shows
how inherent regularity in applications can be used to construct
a workflow that analyzes the program, explores the design
space for resource optimization opportunity, and transforms
the program accordingly. When the transformed program is
synthesized using the HLS tool, it uses less hardware resources
with similar latency comparing to the original design. The
synthesis results on a modern Xilinx Virtex-7 FPGA for a diverse
set of applications show that our automated transformation can
reduce the design area by an average of 15.4% with less than 1%
performance overhead compared to the state-of-the-art Xilinx
HLS tool solutions. This automated tool reduces the design time
and especially can be useful for non-expert FPGA designers.

I. INTRODUCTION

High-level synthesis (HLS) tools help improve productivity

by raising the programming abstraction from hardware

description languages to higher level languages like C, C++,

OpenCL, or SystemC. Despite the advances in HLS design

automation [1], the quality of synthesis results is still not

comparable to hand-coded RTL designs, requiring an expert

designer effort to optimize and rewrite the source code

especially when a design pushes resource limits. Designers

often need to manually explore a large design space to

find the best design option among many different design

alternatives. This manual exploration and code transformations

takes significant time, and requires knowledge of hardware

microarchitecture and the coding style of HLS tool, which

negates the HLS design productivity gains.
This paper presents a practical source-level design

exploration and mapping workflow that enables automatic

source-to-source transformation techniques to improve the

efficiency of synthesis result in an HLS design flow. Different

system-level optimizations and code restructuring can be

applied on a given application specification, where each

transformation impacts differently on resource utilization

and performance of the design after synthesis. In this paper,

we focus on a class of code transformations that results in

improving hardware resource utilization without noticeable

overhead on design latency. These transformations seek to

reuse the same instance of a hardware component for parts

of the design that have recurring sequence of operations,

or computational patterns [2]. Indeed, an intelligent use

of common computational patterns or regularities is a key

reason why the manual design and optimization often excels

the design synthesized by automated HLS tools.
Expanding the automated design space exploration to detect

regularities at a higher level design can reduce the design time

and improve the design quality. At the same time, excessive

resource sharing decisions could introduce more overhead

than benefit due to need for time-multiplexed control that can

be expensive on FPGA implementation targets.We present an

automated pre-synthesis regularity extraction workflow, called

REHLS, that identifies the program inherent regularities that

are not automatically detected by HLS tools, and evaluates

the effectiveness of sharing resources for instances of those

patterns. This information is used to automatically modify

the source code in a way that guides the HLS tool to perform

resource sharing for the selected parts of the code. Using this

modified code, the HLS tool can provide a more efficient

solution that consumes less hardware resources (with similar

latency) when synthesized on FPGA. This reduces design

time and especially helps non-expert designers create a more

efficient design.
The rest of this paper is organized as follows. Section II

surveys prior work in this topic area. Our resource-aware

program transformation workflow is presented in Section III.

In Section IV, we present experimental results, followed by

conclusion in Section V.

II. RELATED WORK

In recent years, some source-to-source transformation tools

have been developed to perform program optimizations that

are not automatically done by the HLS tools. Some tools

target polyhedral loop transformation [3] and memory

partitioning [4]. Others target automated expression

simplification and bitwidth optimization [5][6]. In contrast to

these works, our tool targets detecting computational patterns

that can benefit from resource sharing.
Regularity extraction has been studied extensively in

application-specific instruction set processors [7] and

synthesis literature [8]. Some works extract regularities from

behavioral specification in HLS context. In these works, after

discovering patterns, the scheduling and resource binding

algorithms of synthesis flow are changed to reduce the

resource usage of the generated design[8][2]. Despite these

proposals, off-the-shelf HLS tools still can not automatically

exploit non-obvious regularities in the design; and it is

not possible to change synthesis flow and algorithms in

commercial HLS tools. Therefore, we apply the required

2017 IEEE 35th International Conference on Computer Design

1063-6404/17 $31.00 © 2017 IEEE

DOI 10.1109/ICCD.2017.92

533

modifications on the high-level source code itself to guide the

HLS tool to efficiently share hardware resources when useful.

III. REHLS WORKFLOW

Given a C program with inherent computational patterns,

REHLS explores the opportunities for design optimization

through resource sharing, and automatically transforms the

program so that the HLS tool generates a more efficient design

after synthesis. Fig. 1 illustrates an overview of the proposed

workflow. First, the program is converted to LLVM interme-

diate representation (IR) [9]; the analysis and transformation

is done through LLVM passes; and finally the transformed

LLVM IR is converted back to a C program. The transformed

C program, along with a generated directive file, guides the

HLS tool to share hardware resources when useful.

A. Program Analysis
Given an input C program, the first step is to detect patterns

in the program that are candidates for resource sharing, and

further select some of them for sharing that result in reducing

resource usage with no negative effect on latency of the

synthesized design.

1) Pattern Detection
REHLS finds all patterns that are repeated across different

basic blocks in each function in the program. To do that, the

data flow graph (DFG) of different basic blocks are extracted

from the program’s LLVM IR. DFG is a directed acyclic graph

G(V, E), in which nodes in V represent operations, and edges

in E represent data dependencies between operations. Our

goal is to find common subgraphs among these DFGs. (The

common subgraphs are called pattern.) Given a pair of DFGs,

G1 = (V1, E1) and G2 = (V2, E2), the goal is to enumerate all

the subgraphs of G1 that are isomorphic to subgraphs of G2,

where functionally, type, and bitwidth of corresponding nodes

of V1 and V2 are the same.
Our algorithm detects patterns with a breadth-first search

approach. Our subgraph enumeration process is incremental,

meaning that size i+1 subgraphs are enumerated when all the

size i subgraphs are enumerated. If a size i subgraph is not

frequent enough, it is removed and no further considered for

creating new subgraphs of size i+1. In each iteration i, our

algorithm finds all patterns of size i (with i nodes) across

different DFGs. To do so, in iteration i, we extend the detected

patterns of size i-1 by adding one of their neighbor nodes

LLVM Compiler
(HLS tool)

Optimized
LLVM IR

Pattern Detection

Pattern Selection

Program TransformationHLS Tool

Program Analysis

C program

Directives

Modified
C program

Fig. 1: Overview of REHLS, our resource-aware regularity ex-
traction workflow

in DFG. This method ensures that we only investigate those

subgraphs that can be a potential pattern. For each subgraph

of size i, if the number of occurrences across different DFGs

are more than an acceptable frequency limit, we add it to the

set of candidate patterns. Otherwise, it is not considered for

finding larger subgraphs. This process is repeated until either

no more new pattern is found or we enumerate the subgraph

with maximum possible size.

2) Pattern Selection
Each detected pattern is a candidate component for resource

sharing. The goal is to select all patterns that sharing hardware

resources for their instances can reduce the design area with

negligible change in latency comparing to the baseline design.

To achieve this goal, we estimate the effectiveness of resource

sharing for each detected pattern.
If hardware resources are shared for instances of a pattern,

the corresponding parts of the program, that have instances of

that pattern, must be run sequentially. Therefore, if instances

of a pattern have overlapping lifetimes in the baseline design,

the design latency increases after resource sharing. Therefore,

to meet the performance requirement, we only select instances

of a pattern with no overlapping lifetime. For each detected

pattern, we use an LLVM dependency analysis pass to keep

only those instances that have dependency and, therefore, can

not be executed at the same time. This way, we ensure that re-

source sharing will not noticeably increase the design latency.

It should be noted that adding multiplexers might make the

critical path longer, but this change is usually not considerable.
In this paper, we use a greedy algorithm for pattern se-

lection. At each step, the best pattern is chosen based on

an area gain metric. For each pattern, we estimate the effect

of resource sharing on the resource utilization of design. In

general, sharing FPGA resources can save area. However,

multiplexers are introduced in the inputs of the shared com-

ponents. These multiplexers (especially larger ones) have non-

negligible area. Therefore, the granularity, frequency, and type

of shared component determines if sharing is beneficial in

terms of reducing area or not. Because multiplexers are only

added in the inputs of shared components, more complex

and more frequent patterns are better candidates for resource

sharing. When any candidate pattern Pi is selected for sharing,

instead of FPi instances of the allocated hardware unit, the new

design has only one instance of that hardware unit plus some

extra multiplexers. For each candidate pattern Pi, we compute

an estimation of the area gain that can be achieved due to

resource sharing for the selected instances of that pattern:

AreaGainPi = (FPi−1)×AreaPi−NinputsPi×Areamux (1)

FPi is the frequency (number of instances) of the candidate

pattern Pi that has area AreaPi, and NinputsPi is the number

of inputs of the candidate pattern. Areamux is the area of

a multiplexer of required bitwidth. From the equation, the

more complex and larger pattern with more frequency has

larger area gain. In this equation, area is defined as the

number of hardware elements (FF, LUT, DSP48) that the

pattern component uses. In this paper, we only share the logic

534

elements, therefore, the number of BRAM elements does not

change. Using equation 1, we estimate the number of reduced

(or increased) FF, LUT, and DSP48 elements due to resource

sharing. We calculate the areaGain for all patterns, and remove

those that have negative gain. For the remaining set of patterns

that have positive areaGain, in each iteration, a pattern with

largest areaGain is selected.
After selecting one pattern, we still continue to select other

patterns that are good for resource sharing. First, we remove

all subgraphs that have overlapping node with any node in

the instances of the selected pattern. Then we continue our

search for the remaining subgraphs in the pattern set. We

continue this process until no more candidate pattern (with

positive areaGain) is left in the pattern set. At the end of this

phase, we find all independent patterns and their instances that

are useful for resource sharing.

B. Program Transformation
After selecting patterns, the next step is to make the

required changes in the code. The transformation is done

through an LLVM pass that modifies the LLVM IR. We

define operations inside the pattern as individual functions,

and call this function instead of calling the operator in C for

each instance of the pattern. To guide the HLS tool to share

resources for instances of the pattern, the allocation pragma

is used. (“#pragma HLS allocation instances=patternOP

limit=1 function”). These pragmas are written in a directive

file which is given to the HLS tool as input. The transformed

LLVM IR is then converted back to C using a resurrected

LLVM C Backend. The generated code is a low-level C code

that can be synthesized using HLS tool.

IV. EXPERIMENTAL RESULTS

A. Implementation and Experimental Setup
We use Xilinx Vivado HLS Suite 2015.4 [10] as an exem-

plary state-of-the-art tool for our experiments. This tool uses

the LLVM compiler and compiles a behavioral C/C++ program

into RTL hardware design. Before synthesizing the program, it

performs special LLVM passes to optimize the IR. Although

we targeted Vivado HLS for our experiments, the proposed

workflow is applicable to any LLVM-based HLS tool.
We evaluate REHLS using a set of computation kernels and

applications. A description of each benchmark can be found in

Table I. For each benchmark, the number of selected patterns

(NP), the size of selected patterns (or the number of operations

in the pattern) (PS), and the frequency of each pattern (PF) are

reported in the table. Xilinx Virtex-7 XC7V585T FPGA device

is used as the target hardware platform in our experiments.

B. Results
Table II demonstrates our experimental results. For each

benchmark, we report the resource utilization, performance,

and the number of replicas of the design that can be fitted

on FPGA for three different implementations of the program.

For each benchmark, the top two rows reflect synthesis results

for the baseline and REHLS-optimized programs (Baseline
and REHLS rows in the table). We also tried to manually

TABLE I: Benchmark Descriptions
Benchmark Description NP PS PF
adi Alternating direction implicit solver 2 16,2 2,2
idct Inverse discrete cosine transform 3 13,13,16 2,2,2
gauss 3D gaussian convolution 1 16 4
bnn 4-layer bitwise neural net(feedforward) 2 6,5 4,3
jacobi Jacobi iterative method 1 8 4
sort Radix sort 1 4 4

optimize each program to reduce the resource utilization, the

related results are shown in the Hand-opt row. The fourth

row of each benchmark (Improvement) shows the relative im-

provement of the REHLS optimized version over the baseline

program. (Improvement numbers for resource utilization and

performance is the percentage of relative reduction, and for

the number of replicas is the percentage of relative increase.)

For these benchmarks, the selected patterns are usually from

inside the loop bodies. In our experiments, loops are pipelined.

1) Area Savings
Columns LUT, FF, and DSP in Table II show the resource

utilization for the baseline, REHLS-optimized, and hand-

optimized programs. Our transformation does not change

the number of memory elements, therefore, the number of

utilized BRAM elements is not reported. Our results indicate

that REHLS reduces the number of utilized resources on an

average of 15.4% (9.9% LUT, 17.9% FF, and 20.6% DSP

elements) comparing to the baseline design. This is achieved

by the detection of patterns and reusing the same hardware

resources for them. The amount of reduction depends on

different factors, including the type and number of operations

in the pattern, and the percentage of resource utilization of

instances of patterns comparing to the other parts in the base-

line program. For example, in adi, the selected patterns form

the major computations in the design, and therefore, sharing

hardware resources reduces its area by 44%. On the other

hand, the selected patterns in bnn are not that much complex

comparing to other computations in the design, therefore, it

can only achieve 1.8% area reduction.
We also compared the resource utilization for REHLS-

optimized and hand-optimized programs. In most benchmarks,

the synthesis result for REHLS-optimized program is similar

to the hand-optimized results. In case of bnn, REHLS can not

find the large pattern that we found by hand. The manually-

found pattern includes conditionals and for loops, which is

beyond the scope of DFGs. In some other benchmarks (e.g.

gauss), we could reuse some of the hardware cores for other

operations in the design that are not part of a pattern. This

results in a small improvement in resource usage of hand-

optimized program comparing to the REHLS-optimized.

2) Performance
Column Performance in Table II shows the execution

time (ns) (clock period ×latency) for the baseline, REHLS-

optimized, and hand-optimized designs after synthesis. As

can be seen, performance changes of REHLS comparing

to baseline design are negligible (below 1%), because we

only share resources for those instances of patterns that have

dependency. The slight increase in performance comes from

535

TABLE II: Experimental results on Virtex-7 FPGA

BM Implementation LUT FF DSP Performance Replica

adi
Baseline 34440 34012 176 1969760302 7
REHLS 19240 17792 104 1987776833 12
Hand-opt 18824 17556 104 1987776833 12
Improvement 44.13% 47.68% 40.9% -0.91% 69%

idct
Baseline 2421 2118 64 3246 19
REHLS 2257 1344 32 3277 39
Hand-opt 2129 1283 28 3298 45
Improvement 6.77% 36.5% 50% -0.9% 105%

gauss
Baseline 15312 10145 661 10791672 1
REHLS 15274 8380 565 10792250 2
Hand-opt 15080 8361 501 10792481 2
Improvement 0.24% 17.4% 14.5% -0.005% 16.9%

bnn
Baseline 1557 679 0 98274361 233
REHLS 1489 670 0 98327691 244
Hand-opt 921 376 1 86416466 395
Improvement 4.36% 1.32% 0% -0.05% 4.5%

jacobi
Baseline 18331 7241 174 21769522422 7
REHLS 18075 7113 142 21792855244 8
Hand-opt 18361 7079 110 21792855244 11
Improvement 1.39% 1.76% 18.39% -0.1% 14.28%

sort
Baseline 1297 481 0 1954053.05 280
REHLS 1263 466 0 1964197.6 288
Hand-opt 1263 466 0 1964197.6 288
Improvement 2.6% 3.1% 0% -0.5% 2.8%

the delay that multiplexers might cause.

3) Throughput Speedup
Traditional FPGA design flows usually follow a two-step

approach. First, a given application is optimized for best

performance and resource utilization. Then the optimized

design can be replicated and executed in parallel to fully utilize

the available capacity of the target FPGA, and to improve

throughput [11]. As shown in Section IV-B1, REHLS reduces

the area of synthesized design for our benchmarks. Therefore,

the number of parallel replicas of that design, that can be fitted

in the fixed area budget of the FPGA is increased. In addition,

because the effect of our transformations on latency is negli-

gible, the increase in the number of mapped applications on

FPGA, results in higher throughput. The number of replicas

that can be fitted in our target FPGA for each design version is

shown in the Replica column of Table II. For each benchmark,

we can increase the number of design replicas on FPGA until

one of the resources available on FPGA reaches its maximum

limit. Considering the geometric mean across all the bench-

marks, REHLS improves the number of mapped kernels by a

1.68

1.98

1.17
1.04

1.22
1.02

1.31

2.25

1.32

1.99

1.58 1.59

0.0

0.5

1.0

1.5

2.0

adi idct gauss bnn jacobi sort gmean

Sp
ee

du
p

(Im
pr

ov
ed

 T
hr

ou
gh

pu
t) ReHLS to baseline Hand-opt to baseline

Fig. 2: Throughput speedup (Normalized to baseline)

factor of 1.43× (maximum 2× in idct). For the hand-optimized

version, we can increase the number of replicas by 19% on

average when comparing to the REHLS-optimized program.
Fig. 2 shows the corresponding throughput speedup results

– throughput of the REHLS and hand-optimized designs

normalized to the throughput of the baseline design. As

shown, REHLS achieves on average 1.31× higher through-

put (between 1.02× and 1.98×) comparing to the baseline

design. For the hand-optimized program, we can achieve 21%

(59%) throughput speedup comparing to the throughput of the

REHLS-optimized (baseline) program.
It should be noted that generating the hand-optimized ver-

sion of programs require extensive exploration and synthesis of

different program versions to find which operations are good

targets for sharing. Our automated tool can significantly reduce

the time and effort required for optimization.

V. CONCLUSION AND FUTURE WORK

Preparing the code for HLS tools with high-level transfor-

mations is not new, but it is mainly done manually. However,

some of these transformations can be done efficiently, faster,

and error free in an automatic way by a front-end compiler.

In this paper, we presented an automated resource-aware reg-

ularity extraction workflow. This pre-HLS workflow reduces

the resource usage by identifying and exploiting inherent

computational patterns in an input program. Experimental

results over a variety of benchmarks show that our method

is able to achieve 15.4% reduction in resource utilization and

consequently 1.3× throughput speedup over a best-in-class

commercial HLS tool targeting Xilinx FPGAs. In the future

work, we focus on finding patterns with larger granularity as

well as patterns that are functionally similar.

VI. ACKNOWLEDGMENTS

This work was supported by the DARPA craft program

under award HR0011-16-C-0037.

REFERENCES

[1] J. Cong et al, “High-level synthesis for fpgas: From prototyping to de-
ployment,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 30, no. 4, pp. 473–491, April 2011.

[2] S. Hadjis et al, “Impact of fpga architecture on resource sharing in high-
level synthesis,” ser. FPGA ’12, 2012.

[3] L.-N. Pouchet et al, “Polyhedral-based data reuse optimization for
configurable computing,” ser. FPGA ’13, 2013.

[4] Y. Wang et al, “Memory partitioning for multidimensional arrays in
high-level synthesis,” ser. DAC ’13. ACM, 2013.

[5] X. Gao et al, “Automatically optimizing the latency, area, and accuracy
of c programs for high-level synthesis,” ser. FPGA ’16. ACM, 2016.

[6] A. Lotfi et al, “Grater: An approximation workflow for exploiting data-
level parallelism in fpga acceleration,” ser. DATE ’16, 2016.

[7] P. Brisk et al, “Instruction generation and regularity extraction for
reconfigurable processors,” in CASES ’02, 2002.

[8] J. Cong, H. Huang, and W. Jiang, “A generalized control-flow-aware
pattern recognition algorithm for behavioral synthesis,” in DATE, 2010.

[9] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong
program analysis & transformation,” in CGO ’04, 2004.

[10] “Vivado high-level synthesis,” http://www.xilinx.com/products/
design-tools/vivado/integration/esl-design.html.

[11] P. Li, P. Zhang, L.-N. Pouchet, and J. Cong, “Resource-aware throughput
optimization for high-level synthesis,” ser. FPGA ’15, 2015.

536

